翻訳と辞書
Words near each other
・ Cottbus-Großenhain Railway Company
・ Cottbus-Neuhausen Airport
・ Cottbusser Platz (Berlin U-Bahn)
・ Cottbus–Frankfurt (Oder) railway
・ Cottbus–Guben railway
・ Cotte
・ Cottea
・ Cottee's
・ Cotransformation
・ Cotransporter
・ Cotrel–Dubousset instrumentation
・ Cotreumo Airport
・ Cotriade
・ Cotrifazid
・ Cotriguaçu
Cotriple homology
・ Cotriptyline
・ Cotroceni
・ Cotroceni Palace
・ Cotronei
・ Cotroni crime family
・ COTS
・ Cotswold (Charlotte neighborhood)
・ Cotswold (disambiguation)
・ Cotswold Air Show
・ Cotswold Airport
・ Cotswold architecture
・ Cotswold Canals
・ Cotswold Canals Trust
・ Cotswold Chase


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cotriple homology : ウィキペディア英語版
Cotriple homology

In algebra, given a category ''C'' with a cotriple, the ''n''-th cotriple homology of an object ''X'' in ''C'' with coefficients in a functor ''E'' is the ''n''-th homotopy group of the ''E'' of the augmented simplicial object induced from ''X'' by the cotriple. The term "homology" is because in the abelian case, by the Dold–Kan correspondence, the homotopy groups are the homology of the corresponding chain complex.
Example: Let ''N'' be a left module over a ring ''R'' and let E=-\otimes_R N. Let ''F'' be the left adjoint of the forgetful functor from the category of rings to Set; i.e., free module functor. Then FU defines a cotriple and the ''n''-th cotriple homology of E(FU_
*M) is the ''n''-th left derived functor of ''E'' evaluated at ''M''; i.e., \operatorname^R_n(M, N).
Example (algebraic K-theory):〔Swan, (Some relations between K-functors )〕 Let us write ''GL'' for the functor R \mapsto \varinjlim_n GL_n(R). As before, FU defines a cotriple on the category of rings with ''F'' free ring functor and ''U'' forgetful. For a ring ''R'', one has:
:K_n(R) = \pi_ GL(FU_
* R), \, n \ge 3 
where on the left is the ''n''-th ''K''-group of ''R''. This example is an instance of nonabelian homological algebra.
== Notes ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cotriple homology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.